

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Mean Amplitudes Of Vibration For Aluminum And Ferric Chloride Dimers

O. Tørset^a; S. J. Cyvin^a

^a Division of Physical Chemistry, The University of Trondheim, Norway

To cite this Article Tørset, O. and Cyvin, S. J.(1974) 'Mean Amplitudes Of Vibration For Aluminum And Ferric Chloride Dimers', *Spectroscopy Letters*, 7: 4, 219 — 221

To link to this Article: DOI: 10.1080/00387017408067239

URL: <http://dx.doi.org/10.1080/00387017408067239>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

MEAN AMPLITUDES OF VIBRATION FOR ALUMINUM AND
FERRIC CHLORIDE DIMERS

Keywords: Mean amplitude, Al_2Cl_6 , Fe_2Cl_6

O. Tørset and S. J. Cyvin

Division of Physical Chemistry, The University of Trondheim,
N-7034 Trondheim-NTH, Norway

ABSTRACT

Mean amplitudes of vibration were calculated from spectroscopic data for all the types of interatomic distances in Al_2Cl_6 and Fe_2Cl_6 .

INTRODUCTION

In a previous paper¹ normal coordinate analyses were reported for Al_2Cl_6 and Fe_2Cl_6 . The purpose of the present work is to calculate mean amplitudes of vibration² for the molecules. These quantities are of great value in connection with electron diffraction studies. Modern gas electron diffraction investigations have actually been performed for these molecules, viz. Al_2Cl_6 ³ and Fe_2Cl_6 ,⁴ among others of the bridged M_2X_6 metal-halogen type: Al_2Br_6 ,³ Ga_2Cl_6 ⁵ and Ga_2Br_6 .⁵

COMPUTATIONS

The structural parameters and force fields adopted in this work are reported elsewhere.¹ The computations of mean amplitudes were performed by standard methods² using an

ALGOL program series designed for the UNIVAC-1108 computer at the Computing Centre of The University of Trondheim.

The results of the calculations for Al_2Cl_6 and Fe_2Cl_6 at absolute zero and room temperature are collected in Table 1. The nine types of interatomic distances are identified in accord with previous reports.^{6,7}

DISCUSSION AND CONCLUSION

The applied force fields¹ were reported to be uncertain for some reasons. Nevertheless we believe that they give mean amplitudes of significant value in electron diffraction studies. The obtained results (Table 1) all seem to have reasonable orders of magnitude.

Generalized mean-square amplitudes of vibration² have been reported previously for Al_2Cl_6 .⁸ The mean amplitudes of vibration which we have deduced from these data are rather different from our results (Table 1). The previous data, how-

TABLE 1
Mean Amplitudes of Vibration (Å units)

Distance	Al_2Cl_6		Fe_2Cl_6	
	0 K	298 K	0 K	298 K
$\text{M}-\text{X}_t$	0.047	0.054	0.043	0.049
$\text{M}-\text{X}_b$	0.051	0.060	0.050	0.063
$\text{M}\cdots\text{X}$	0.070	0.117	0.085	0.235
$\text{M}-\text{M}$	0.058	0.074	0.055	0.089
$\text{X}_b\cdots\text{X}_b$	0.055	0.071	0.063	0.091
$\text{X}_b\cdots\text{X}_t$	0.069	0.112	0.082	0.170
$\text{com}(\text{X}\cdots\text{X})$	0.064	0.097	0.070	0.124
$\text{cis}(\text{X}\cdots\text{X})$	0.094	0.203	0.144	0.527
$\text{trans}(\text{X}\cdots\text{X})$	0.072	0.122	0.088	0.202

VIBRATION IN Al_2Cl_6 AND Fe_2Cl_6

ever, were obtained from a force field⁹ based on an old vibrational assignment, which presumably was improved in our previous work.¹

Mean amplitudes of vibration for Fe_2Cl_6 from spectroscopic data are given here (Table 1) for the first time.

REFERENCES

- 1 S. J. Cyvin and O. Törset, *Rev. Chim. minerale* **9**, 179 (1972).
- 2 S. J. Cyvin, *Molecular Vibrations and Mean Square Amplitudes*, Universitetsforlaget, Oslo / Elsevier, Amsterdam, 1968.
- 3 P. A. Akishin, N. G. Rambidi and E. Z. Zasorin, *Kristallografiya* **4**, 186 (1959).
- 4 E. Z. Zasorin, N. G. Rambidi and P. A. Akishin, *Zh. Strukt. Khim.* **4**, 910 (1963).
- 5 P. A. Akishin, V. A. Naumov and V. M. Tatevskii, *Kristallografiya* **4**, 194 (1959).
- 6 S. J. Cyvin and B. Vizi, *Acta Chim. Hung.* **59**, 85 (1969).
- 7 S. J. Cyvin and O. Törset, *Rev. Chim. minerale* **9**, 431 (1972).
- 8 K. Venkateswarlu, S. Mariam and A. Natarajan, *Acta Phys. Polon.* **32**, 213 (1967).
- 9 K. Venkateswarlu and A. Natarajan, *Acta Phys. Polon.* **32**, 205 (1967).

Received March 22, 1974

Accepted April 1, 1974